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Natural frequencies of rectangular plates carrying a concentrated mass are obtained by
employing a set of trigonometric beam functions in the Rayleigh-Ritz method. Two models
of the energy method using one-term and 100-term model are used in the study. Results
obtained from the analytical study using the energy method are compared with those
measured experimentally. It is found that the 100-term analytical model can generally
predict well the experimental frequencies of a plate carrying an arbitrarily placed
concentrated mass, whereas the one-term analytical model is only good for estimating the
first-mode frequency of a plate carrying a centrally placed mass.
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1. INTRODUCTION

Electronic systems in aircraft or aerospace applications are usually housed in electronic
enclosures with a chassis. To ensure equipment reliability, it is of vital importance that
they are designed to withstand dynamic stresses. There is no simple and accurate rule
involving the chassis weight and size that allows the designer to predict the natural
frequencies and mode shapes of the loaded chassis. Hence the natural frequencies of lateral
vibrations of a rectangular plate carrying a concentrated mass are often of interest [1–8].
Rectangular plates do not have an exact solution unless at least two opposite edges are
simply supported [9]. Natural frequencies of plates involving other edge conditions are
estimated by the Rayleigh-Ritz method using shape functions satisfying edge conditions
in both directions. Beam characteristic functions were used in the Rayleigh-Ritz method
to obtain frequency estimates for the plates with various edge conditions by Leissa [9]. A
study by Bhat [10] used boundary characteristic orthogonal polynomials in the energy
method. His later work [11] introduced a reduction method by assuming a deflection shape
in one direction consistent with the boundary conditions and applying Galerkin’s
averaging technique and the Kantorovich method to obtain frequency coefficients. In
another work [4], the fundamental frequency of vibrating beams and plates carrying finite
masses was determined by using the optimized Rayleigh method, with account taken of
the effects of both their translational and rotational inertias. Chai [7, 8] presented a
frequency analysis for the loaded plates by double trigonometric series.

In the present study, the frequencies of rectangular plates carrying a concentrated mass
have been evaluated by using a set of combined trigonometric function in the
Rayleigh-Ritz method. Numerical results are compared with those obtained using a shaker
experimental set-up.
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T 1

Assumed shape functions using trigonometric functions

Two opposite
ends Xm(x) Yn(y) m n

S-S sin (mpx/a) sin (npy/b) 1, 2, 3, . . . 1, 2, 3, . . .
C-C sin (px/a) sin (mpx/a) sin (py/b) sin (npy/b) 1, 2, 3, . . . 1, 2, 3, . . .
C-S sin (px/2a) sin (mpx/2a) sin (py/2b) sin (npy/2b) 2, 4, 6, . . . 2, 4, 6, . . .

2. MODELS STUDIED

2.1.  

The Rayleigh-Ritz is an energy method (EM) used in the present formulation and a
multiple-term trigonometric function is used to represent the appropriate mode shape.

Consider a thin plate carrying a concentrated mass M at position x= k and y= h with
the axes origin at one of the corners of the plate, the strain energy of bending for the case
of free vibration is [12, 13]

Umax =
D
2 g

a

0 g
b

0 601
2w

1x2 +
12w
1y21

2

−2(1− n) $12w
1x2

12w
1y2−0 12w

1x 1y1
2

%7 dx dy, (1)

where D=Et3/[12(1− n2)] is the flexural rigidity of the plate, E is Young’s modulus, n is
the Poisson ratio, and t is the thickness of the plate.

The maximum kinetic energy of the plate carrying a concentrated mass (excluding the
rotary inertia effect) is given as

Tmax =
v2

2 6g
b

0 g
a

0

g(x, y)w2(x, y) dx dy+M(k, h)w2(k, h)7 , (2)

where g(x, y) is the mass of the plate per unit area, M(k, h) is the concentrated mass at
co-ordinates �k, h�, w(x, y) is the assumed deformed shape, and v is the frequency of the
plate. For the system to be conservative the maximum bending energy equals the maximum
kinetic energy, hence resulting in the well-known Rayleigh’s quotient:

Figure 1. Location of grid points for the 600×300 mm plate.
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T 2

Configurations of the loaded plate system

Aluminium plate
ZXXXXXXCXXXXXXV
Size (mm) mass (kg) Concentrated mass (kg)

600×300×2 1·151 0·096
500×500×2 1·594 0·301
500×200×2 0·691

v2 =Umax/T*, (3)

where

T*= 1
2 g

b

0 g
a

0

g(x, y)w2(x, y) dx dy+ 1
2 M(k, h)w2(k, h).

The Rayleigh-Ritz method is an extension of Rayleigh’s method which not only provides
a means of determining a more accurate value of the fundamental frequency, but also gives
an approximation of the higher frequencies and mode shapes. Mathematically a shape
function in the form of a series is written as [14]

w(x, y)= s
M

m=1

s
N

n=1

AmnXm(x)Yn( y), (4)

where Xm(x) and Yn( y) are appropriate shape functions that satisfy at least the geometrical
boundary conditions of the plate, and Amn are the unknown coefficients of the functions.
Substitution of the assumed function (4) into the total vibrating energy of equations (1)
and (2) yields

Umax = 1
2 s

m

s
n

s
p

s
q

Kmnpq Amn Apq , T*= 1
2 s

m

s
n

s
p

s
q

Smnpq Amn Apq , (5, 6)

where

Kmnpq =g g {(X0mYn +XmY� n)(X0p Yq +XpY� q)+2(1− n)(XmX0p YnY� q

−X'mX'pY� nY� q)} dx dy, (7)

Smnpq = g g g (XmXpYnYq) dx dy+MXm(k)Xp(k)Yn(h)Yq(h). (8)

In equations (7) and (8), prime denotes differentiation with respect to x and dot denotes
differentiation with respect to y.

The minimization of equation (3) with respect to each of the coefficients yields

1Umax/1Amn −(Umax/T*)(1T*/1Amn)=0. (9)
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Figure 2. Location of grid points for the 500×500 mm plate.

Figure 3. Location of grid points for the 500×200 mm plate.

Figure 4. Schematic layout of the experimental set-up.
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Figure 5. Comparative results of the 600×300 mm CCCC plate carrying a mass of 0.096 kg. R, experimental;
– – – – –, EM one-term; ——, EM 100-term.

Since v2 =Umax/T*, the above equation can be written as:

1Umax/1Amn −v2(1T*/1Amn)=0. (10)

The above equation can be rearranged in a compact matrix format:

D[K]{A}=v2[S]{A}, (11)

where [K] is the stiffness matrix with its coefficients being defined in equation (7), [S] is
the mass matrix with its coefficients being defined in equation (8) and {A} is the vector
of the unknown coefficients.

Specifying the required number of M terms and N terms in the postulated modal shape
function of equation (4), the minimization process yields a set of M×N linear
homogeneous simultaneous equation (10) and thus equation (11) will give M×N stiffness
and mass matrices. A standard numerical eigensolution scheme written in a computer
language by Linfield and Penny [15] was used to extract the eigenvalues and their
corresponding eigenvectors for the plate’s natural frequencies and the corresponding mode
shapes.

As reflected in equations (2) and (4), the accuracy of the Rayleigh method depends on
the selection of compatible shape functions, Xm(x) and Yn( y). A set of beam functions
shown in Table 1 is used in the present study; the origin of the x-y axes is at one corner



. .   .290

of the plate as shown in Figure 1. The letters S and C mean simply supported and clamped
respectively. By combining the beam functions given in Table 1 to satisfy the various plate
boundary conditions, a total of 6 distinct cases can be obtained: SSSS, SSSC, CCCC,
CSCS, CCSS and CCCS. However, only 2 distinct cases will be emphasized in this study,
CCCC and CSCS (and SCSC). In the present study, two sets of the solution using the
functions for S-S and C-C of Table 1 are generated, namely, EM one-term (m= n=1)
and EM 100-term (m= n=10). It was found in references [7, 8] that the 100 terms in the
series expansion is necessary for convergence; in particular for cases of off-centre loaded
mass.

2.2. 

Modal testing was conducted to investigate the effect on the system frequencies of a
concentrated mass located at various plate locations. The testing configurations of the
loaded plate system are shown in Table 2. A shaker system (see Figure 4) was set up to
obtain a set of frequencies of the loaded plate as the concentrated mass is shifted from
one position to another. These positions were marked by grid points equally spaced
along the plate’s centre-lines in both the x- and y-directions, as shown in Figures 1–3.
For example, position 10 is the plate’s centre (k/a=0·5, h/b=0·5) of both the x- and
y-axes.

During the experimental process, the rectangular plate is supported by either/both the
knife-edge and the square bars depending on the types of boundary conditions to be tested.
The shaker is suspended from the support stand. As seen in Figure 4, the spectrum analyser
sends a known signal to activate the shaker through the power amplifier. The shaker then
vibrates the plate within a range of specified frequencies and the responses are picked up
by the accelerometer and the force transducer via the charge amplifier and the conditioning

T 3

Experimental results of the 600×300 mm CCCC plate carrying a mass of 0·096 kg

Position k/a f1/f01 f2/f02 f3/f03 h/b f1/f01 f2/f02 f3/f03

1 0·05 0·994 1·000 0·979 0·05 0·985 1·000 1·000
2 0·10 0·993 0·944 0·888 0·10 0·978 1·000 0·997
3 0·15 0·917 0·906 0·858 0·15 0·951 1·000 0·980
4 0·20 0·875 0·913 0·868 0·20 0·931 0·993 0·953
5 0·25 0·828 0·919 0·902 0·25 0·862 0·987 0·941
6 0·30 0·813 0·931 0·941 0·30 0·856 1·000 0·932
7 0·35 0·806 0·951 0·986 0·35 0·822 1·000 0·936
8 0·40 0·806 0·965 1·000 0·40 0·807 0·993 0·941
9 0·45 0·800 0·975 0·961 0·45 0·794 0·987 0·941

10 0·50 0·800 0·987 0·941 0·50 0·794 0·987 0·941
11 0·55 0·800 0·984 0·961 0·55 0·794 0·987 0·941
12 0·60 0·806 0·968 0·992 0·60 0·807 0·987 0·941
13 0·65 0·813 0·944 0·997 0·65 0·834 0·980 0·932
14 0·70 0·813 0·926 0·949 0·70 0·862 0·987 0·936
15 0·75 0·820 0·919 0·905 0·75 0·896 0·987 0·941
16 0·80 0·862 0·906 0·876 0·80 0·931 0·993 0·961
17 0·85 0·924 0·902 0·863 0·85 0·965 0·993 0·982
18 0·90 1·000 0·944 0·880 0·90 0·978 1·000 0·997
19 0·95 0·993 1·007 0·979 0·95 0·993 1·000 1·000

Note: for the CCCC plate of 600×300 mm, f01 =136·3 Hz; f02 =152·3 Hz; f03 =219·0 Hz.
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Figure 6. Comparative results of the 600×300 mm CCCC plate carrying a mass of 0.301 kg.

Figure 7. Comparative results of the 500×500 mm CCCC loaded plate. Key as Figure 5. Left-hand column
mass=0·096 kg; right-hand column mass=0·301 kg.



1

1

0.4
0

k/a

f 3
/f

0 3 0.8

0.2 0.4 0.6 0.8

0.6

1

0.6

f 2
/f

0 2 0.8

1

0.4

f 1
/f

0 1 0.8

0.6

10
h/b

0.2 0.4 0.6 0.8

1

0.98

0.99

1

1.05

0.65

0
k/a

f 3
/f

0 3 0.85

0.2 0.4 0.6 0.8

0.95

f 2
/f

0 2
 

0.85

0.75

1

f 1
/f

0 1

0.9

0.6

0.65

0.8

0.7

1

1

0.6

0
h/b

0.8

0.2 0.4 0.6 0.8

1.05

1

0.95

0.5

0.7

0.9

. .   .292

Figure 8. Comparative results of the 500×200 mm CCCC plate carrying a mass of 0·301 kg. Key as Figure 5.

Figure 9. Comparative results of the 600×300 mm CSCS plate carrying a mass of 0·301 kg. Key as Figure 5.



1

1.00

0.70
0

k/a

f 3
/f

0 3 0.90

0.2 0.4 0.6 0.8

0.80

1.00

0.70

0.90

0.80

1.00

0.60

0.80

f 2
/f

0 2
f 1

/f
0 1

10
h/b

0.2 0.4 0.6 0.8

1.00

0.80

0.90

1

1

0.4
0

k/a

f 3
/f

0 3 0.8

0.2 0.4 0.6 0.8

0.6

1

0.6

f 2
/f

0 2 0.8

1

0.4

f 1
/f

0 1 0.8

0.6

1

1

0.4
0

h/b

0.8

0.2 0.4 0.6 0.8

0.6

1.00

0.98

0.99

1.0

0.6

0.8

   293

Figure 10. Comparative results of the 500×500 mm CSCS plate carrying a mass of 0·301 kg. Key as Figure 5.

Figure 11. Comparative results of the 500×200 mm CSCS plate carrying a mass of 0·301 kg. Key as Figure 5.
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Figure 12. Comparative results of the 600×300 mm SCSC plate carrying a mass of 0·301 kg. Key as Figure 5.

amplifier. The real-time responses of the vibrating plate are plotted from which the
resonance frequencies can be determined.

3. RESULTS AND DISCUSSIONS

3.1.      

Experimental testing was conducted by placing a concentrated mass at a grid point
designated along the plate’s centre-line on the x- or y-axis. The first three frequencies were

Figure 13. Sketch of the first mode shape for the 600×300 mm CCCC plate carrying a mass of 0·096 kg.
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Figure 14. Sketch of the second mode shape for the 600×300 mm CCCC plate carrying a mass of 0·096 kg.

obtained and the experimental results were compared with the theoretical results from the
EM one-term and 100-term models. It should be noted that the shaker of negligible mass
was mounted at the plate’s centre for all the experimental results presented here.

To show the change of the plate frequencies in a nondimensional form, the frequency
ratio ( fn/f0n) is plotted against the length ratio (k/a or h/b), as seen in Figure 5. Note that
fn is the frequency of mode n for the loaded plate, while f0n is the frequency of mode n
for the unloaded plate. For illustration, the experimental results for the 600×300 mm
plate under the CCCC condition are presented in Table 3.

Results of different a/b ratios of the loaded plates under the CCCC boundary condition
are shown in Figures 5–9, while those plates under the CSCS (short edges clamped, long
edges simply-supported) conditions are shown in Figures 10 and 11. For the SCSC (short
edges simply-supported, long edges clamped) condition, only results of the 600×300 mm
plate are shown (see Figure 12). It is found that the EM 100-term model can generally
predict accurately the experimental frequencies of the plates regardless of the position of
concentrated mass, whereas the EM one-term model is only good for estimating the

Figure 15. Sketch of the third mode shape for the 600×300 mm CCCC plate carrying a mass of 0·096 kg.
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first-mode frequency of the plates carrying a centrally-placed mass. It is also found that
the frequency curves of the loaded plates show similar trends when carrying different
masses of 0·096 or 0·301 kg.

It is obvious that the h/b-direction for the 600×300 mm and 500×200 mm plates
contain fewer nodes than that of the k/a-direction. This is expected as the plate’s width
(b=300 or 200 mm) is smaller than its length (a=600 or 300 mm).

3.2.     - 

The mode shape of the plate at a particular frequency can be roughly sketched out by
cross-referring the graphs of frequency-ratio versus length ratios of two directions, k/a and
h/b. It should be mentioned here that the data presented for the mass locations along the
two centre-lines is not sufficient for plotting contour lines of constant frequency ratios.
For an accurate contour map of the iso-frequency ratios, one would really need to use a
completed two-dimensional grid of the mass locations. The contour lines of constant
frequency ratios for the first three natural frequencies presented here are extracted from
the existing set of data coupled with the authors’ intuition and previous experience on the
subject [16, 17].

As an illustration, the curves shown in Figure 5 are used for this purpose. The frequency
ratio curves for the first mode frequency shown in Figure 5 along the length and the width
of the plate are sketched out in three dimensions. Contour lines of constant frequency
ratios at various position aong the length and width of the plate are thus reproduced as
shown in Figure 13. As it can be seen from the Figure, these contours are essentially similar
to the fundamental mode shape of the plate. The other two higher modes results of Figure
5 are reproduced for the higher frequency mode shapes as shown in Figures 14 and 15.
The contour lines of Figure 14 suggest that the plate is vibrating at mode 21, of the second
natural frequency, while those of Figure 15 imply mode 31, of the third natural frequency.
It has been demonstrated that one can easily relate an iso-frequency curve with the
associated mode shape by virtue of the contour mapping method just demonstrated. This
technique, as far as the authors know, has not been reported or published elsewhere.

4. CONCLUDING REMARKS

A vibration analysis of rectangular plates carrying a single mass along the plate’s x- and
y-centre-lines was carried out. Two opposite edges of the plate can either be both clamped
or a combination of clamped and simply supported. The effects of added masses and their
locations on the first three natural frequencies are of main concern. A shaker system was
employed to obtain experimental frequencies, while an energy method was adopted in the
numerical evaluation. It has been found that the EM 100-term model can generally predict
well the experimental frequencies of singly loaded plates regardless of concentrated mass’
position, whereas the EM one-term model is only good for estimating the first-mode
frequency of singly-loaded plates with a centrally placed concentrated mass.
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